

■ FCX-AIV series

GAUGE AND ABSOLUTE PRESSURE TRANSMITTER WITH REMOTE SEAL

DATA SHEET I

FKP, FKH ···6

The FKP and FKH models of FCX-AIV series of pressure transmitters accurately measure a gauge and absolute pressure and transmit a proportional 4-20 mA output signal.

The transmitter uses an unique micro-capacitive silicon sensor in combination with a state-of-the-art digital signal processing to provide exceptional performances in terms of accuracy and stability.

FCX-AIV series of pressure transmitters comply with Safety Integrity Level 2 or 3 according to IEC 61508 and IEC 61511 standards.

FEATURES

1. High accuracy

The Fuji Electric's micro-capacitive sensor provides in standard $\pm 0.1\%$ and $\pm 0.2\%$ accuracies for gauge and absolute pressure respectively, for all elevated or suppressed calibration ranges without additional adjustments.

2. Minimum inventory and design

Electronic parts and transmitter housing are interchageable among all FCX-AIV transmitters. Gauge and absolute pressure transmitters with remote seals are based on a full welded design with a reduced and optimized volume flange to guarantee a perfect vaccum tightness and high pressure services.

3. Minimum environmental influence

The Advanced Floating Cell technology provides a high immunity against temperature variations and overpressure commonly found in the process industry and substantially reduces the overall measurement error.

4. HART 7 communication protocol

FCX-AIV series of pressure transmitters can communicate using the universal HART communication protocol. By the use of the HART Device Description files, HART compatible devices can communicate with any FCX-AIV transmitter.

5. Application flexibility

Various options are available to address most of the process industry applications, including:

- Full range of hazardous area approvals
- Built-in RFI filter and lightning arrester
- 5 digits local display with engineering units
- Stainless steel electronics housing
- Wide selection of wetted part materials

6. Programmable output Linearization Function

The output signal can be linearized using up to 14 pair-points.

7. Burnout current flexibility

The burnout current value can be adjusted in the ranges of [3.4; 4.0] and [20.8; 22.5] mA and can be compliant with NAMUR NE43 recommandations.

8. Contacless local adjustment

An optional LCD unit with 3 push-buttons and magnetic switches allows to configure the transmitter without opening the indicator cover (flameproof approvals for hazardous locations). A magnetic pen is required to enable the 3 magnetic switches (please refer to the "Accessories" section).

FUNCTIONAL SPECIFICATIONS

Type:

FKP or FKH : Smart, 4-20 mA + HART communication protocol **Service:**

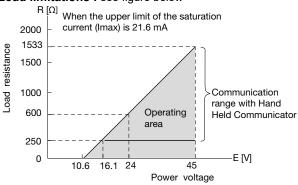
Liquid, gas, or vapour

Span, range and overrange limit:

Model		limit {bar}	Rangelimits	Overrange limit		
Model	Min.	Max.	(bar)	(bar)		
	FK	P				
FKP□01	0.08125	1.3	-1 to +1,3	10		
FKP□02	0.3125	5	-1 to +5	15		
FKP□03	1.875	30	-1 to +30	90		
FKP□04	6.25	100	-1 to +100	150		
	F	(H	(bar abs)	(bar abs)		
FKH□02	0.08125	1,3	0 to +1.3	5		
FKH□03	0.3125	5	0 to +5	15		
FKH□04	1.875	30	0 to +30	90		

Note: Span higher than 1/10 of the URL is recommended for optimal accuracy.

Output signal:


4-20 mA with HART communication protocol.

Power supply:

10.5 to 45 V DC at transmitter terminals. 10.5 to 32 V DC with the optional arrester4

Refer to hazardous location table for specific limitations

Load limitations: see figure below

Note 1 : The load resistance varies with the upper limit of the saturation current [I max]

R
$$[\Omega] = \frac{E[V] - 10.5}{(I max[mA] + 0.9)x10^{-3}}$$

Note 2 : For communication with a HART device, a minimum load of 250 Ω is required.

Hazardous locations: (Approval pending)

Marking (Digit 10 =)	Hazardous locat						
Ex 1 G/D Ex ia IC T4 Ga (-40°C \le Ta \le +60°C) Ex ia IC T5 Ga (-40°C \le Ta \le +50°C) Ex ia IIC T ₂₀₀ 135°C Da (-40°C \le Ta \le +50°C) Ex ia IIC T ₂₀₀ 100°C Da (-40°C \le Ta \le +50°C) IP 66/67 Ui \le 28Vdc, Ii \le 110mA, Pi \le 0.77W Ci $=$ 14.9nF ₍₁₎ /26.0nF ₍₂₎ Li $=$ 0.18mH Flameproof Enclosure "d": Ex 2G/D Ex d IC T5 Gb (-40°C \le Ta \le +85°C) Ex d IIC T6 Gb (-40°C \le Ta \le +65°C) Ex tb IIIC T ₂₀₀ 100°C Db (-40°C \le Ta \le +65°C) Ex tb IIIC T ₂₀₀ 85°C Db (-40°C \le Ta \le +65°C) 45 Vdc max (M) Combination (K) + (X) Intrinsic Safety "j": Ex ia IIC T4 Ga (-40°C \le Ta \le +60°C) Ex ia IIC T5 Ga (-40°C \le Ta \le +60°C) Ex ia IIC T5 Ga (-40°C \le Ta \le +60°C) Ex ia IIC T5 Ga (-40°C \le Ta \le +50°C) Ex ia IIC T5 Ga (-40°C \le Ta \le +50°C) IP 66/67 Ui \le 28Vdc, Ii \le 110mA, Pi \le 0.77W Ci $=$ 14.9nF ₍₁₎ /26.0nF ₍₂₎ Li $=$ 0.18mH Flameproof Enclosure "d": Ex d IIC T5 Gb (-40°C \le Ta \le +85°C) Ex d IIC T6 Gb (-40°C \le Ta \le +85°C) Ex d IIC T6 Gb (-40°C \le Ta \le +85°C) Ex d IIC T6 Gb (-40°C \le Ta \le +85°C) Ex d IIC T6 Gb (-40°C \le Ta \le +85°C)	g (Digit 10						
Ex ia IIC T4 Ga (-40°C \le Ta \le +60°C) Ex ia IIC T5 Ga (-40°C \le Ta \le +50°C) Ex ia IIIC T $_{200}$ 135°C Da (-40°C \le Ta \le +50°C) Ex ia IIIC T $_{200}$ 100°C Da (-40°C \le Ta \le +50°C) IP 66/67 Ui \le 28Vdc, Ii \le 110mA, Pi \le 0.77W Ci $=$ 14.9nF $_{(1)}$ /26.0nF $_{(2)}$ Li $=$ 0.18mH Flameproof Enclosure "d": Ex II 2G/D Ex d IIC T5 Gb (-40°C \le Ta \le +85°C) Ex d IIC T6 Gb (-40°C \le Ta \le +65°C) Ex tb IIIC T $_{200}$ 100°C Db (-40°C \le Ta \le +65°C) Ex tb IIIC T $_{200}$ 85°C Db (-40°C \le Ta \le +65°C) 45 Vdc max (M) Combination (K) + (X) Intrinsic Safety "i": Ex ia IIC T4 Ga (-40°C \le Ta \le +60°C) Ex ia IIIC T5 Ga (-40°C \le Ta \le +60°C) Ex ia IIIC T5 Ga (-40°C \le Ta \le +60°C) Ex ia IIIC T200135°C Da (-40°C \le Ta \le +60°C) Ex ia IIIC T200100°C Da (-40°C \le Ta \le +50°C) IP 66/67 Ui \le 28Vdc, Ii \le 110mA, Pi \le 0.77W Ci $=$ 14.9nF $_{(1)}$ /26.0nF $_{(2)}$ Li $=$ 0.18mH Flameproof Enclosure "d": Ex d IIC T5 Gb (-40°C \le Ta \le +85°C) Ex d IIC T6 Gb (-40°C \le Ta \le +85°C) Ex d IIC T6 Gb (-40°C \le Ta \le +85°C) Ex d IIC T6 Gb (-40°C \le Ta \le +85°C) Ex d IIC T6 Gb (-40°C \le Ta \le +85°C) Ex d IIC T6 Gb (-40°C \le Ta \le +85°C)							
$(K) \begin{tabular}{l l l l l l l l l l l l l l l l l l l $							
$ (K) \begin{tabular}{l l l l l l l l l l l l l l l l l l l $							
Ex ia IIIC $T_{200}100^{\circ}$ C Da $(-40^{\circ}$ C $\leq Ta \leq +50^{\circ}$ C) IP 66/67 Ui ≤ 28 Vdc, Ii ≤ 110 mA, Pi ≤ 0.77 W Ci = 14.9nF ₍₁₎ /26.0nF ₍₂₎ Li = 0.18mH Flameproof Enclosure "d": Ex II 2G/D Ex d IIC T5 Gb $(-40^{\circ}$ C $\leq Ta \leq +85^{\circ}$ C) Ex d IIC T6 Gb $(-40^{\circ}$ C $\leq Ta \leq +65^{\circ}$ C) Ex tb IIIC $T_{200}100^{\circ}$ C Db $(-40^{\circ}$ C $\leq Ta \leq +85^{\circ}$ C) Ex tb IIIC $T_{200}85^{\circ}$ C Db $(-40^{\circ}$ C $\leq Ta \leq +65^{\circ}$ C) 45 Vdc max (M) Combination (K) + (X) Intrinsic Safety "i": Ex ia IIC T4 Ga $(-40^{\circ}$ C $\leq Ta \leq +60^{\circ}$ C) Ex ia IIIC T5 Ga $(-40^{\circ}$ C $\leq Ta \leq +60^{\circ}$ C) Ex ia IIIC T5 Ga $(-40^{\circ}$ C $\leq Ta \leq +60^{\circ}$ C) Ex ia IIIC T200135°C Da $(-40^{\circ}$ C $\leq Ta \leq +60^{\circ}$ C) IP 66/67 Ui ≤ 28 Vdc, Ii ≤ 110 mA, Pi ≤ 0.77 W Ci = 14.9nF ₍₁₎ /26.0nF ₍₂₎ Li = 0.18mH Flameproof Enclosure "d": Ex d IIC T5 Gb $(-40^{\circ}$ C $\leq Ta \leq +85^{\circ}$ C) Ex d IIC T6 Gb $(-40^{\circ}$ C $\leq Ta \leq +85^{\circ}$ C) Ex d IIC T6 Gb $(-40^{\circ}$ C $\leq Ta \leq +85^{\circ}$ C) Ex tb IIIC $T_{200}100^{\circ}$ C Db $(-40^{\circ}$ C $\leq Ta \leq +85^{\circ}$ C)							
Ex ia IIIC $T_{200}100^{\circ}$ C Da $(-40^{\circ}$ C $\leq Ta \leq +50^{\circ}$ C) IP 66/67 Ui ≤ 28 Vdc, Ii ≤ 110 mA, Pi ≤ 0.77 W Ci = 14.9nF ₍₁₎ /26.0nF ₍₂₎ Li = 0.18mH Flameproof Enclosure "d": Ex II 2G/D Ex d IIC T5 Gb $(-40^{\circ}$ C $\leq Ta \leq +85^{\circ}$ C) Ex d IIC T6 Gb $(-40^{\circ}$ C $\leq Ta \leq +65^{\circ}$ C) Ex tb IIIC $T_{200}100^{\circ}$ C Db $(-40^{\circ}$ C $\leq Ta \leq +85^{\circ}$ C) Ex tb IIIC $T_{200}85^{\circ}$ C Db $(-40^{\circ}$ C $\leq Ta \leq +65^{\circ}$ C) 45 Vdc max (M) Combination (K) + (X) Intrinsic Safety "i": Ex ia IIC T4 Ga $(-40^{\circ}$ C $\leq Ta \leq +60^{\circ}$ C) Ex ia IIIC T5 Ga $(-40^{\circ}$ C $\leq Ta \leq +60^{\circ}$ C) Ex ia IIIC T5 Ga $(-40^{\circ}$ C $\leq Ta \leq +60^{\circ}$ C) Ex ia IIIC T200135°C Da $(-40^{\circ}$ C $\leq Ta \leq +60^{\circ}$ C) IP 66/67 Ui ≤ 28 Vdc, Ii ≤ 110 mA, Pi ≤ 0.77 W Ci = 14.9nF ₍₁₎ /26.0nF ₍₂₎ Li = 0.18mH Flameproof Enclosure "d": Ex d IIC T5 Gb $(-40^{\circ}$ C $\leq Ta \leq +85^{\circ}$ C) Ex d IIC T6 Gb $(-40^{\circ}$ C $\leq Ta \leq +85^{\circ}$ C) Ex d IIC T6 Gb $(-40^{\circ}$ C $\leq Ta \leq +85^{\circ}$ C) Ex tb IIIC $T_{200}100^{\circ}$ C Db $(-40^{\circ}$ C $\leq Ta \leq +85^{\circ}$ C)	(H						
$ P 66/67 \\ U \le 28 \text{Vdc}, I \le 110 \text{mA}, P \le 0.77 \text{W} \\ C = 14.9 \text{nF}_{(1)}/26.0 \text{nF}_{(2)} L = 0.18 \text{mH} \\ F \text{lameproof Enclosure "d":} \\ E \times I 2 \text{G/D} \\ E \times I C \text{To Gb} (-40 \text{°C} \le \text{Ta} \le +85 \text{°C}) \\ E \times I C \text{To Gb} (-40 \text{°C} \le \text{Ta} \le +85 \text{°C}) \\ E \times I C \text{To Gb} (-40 \text{°C} \le \text{Ta} \le +85 \text{°C}) \\ E \times I C \text{To Gb} (-40 \text{°C} \le \text{Ta} \le +85 \text{°C}) \\ E \times I C \text{To To Combination} C \times C \times C \times C \times C \\ E \times I C \times C$							
$ Ui \leq 28 \text{Vdc}, \ i \leq 110 \text{mA}, \ Pi \leq 0.77 \text{W} \\ Ci = 14.9 \text{nF}_{(1)} / 26.0 \text{nF}_{(2)} \ Li = 0.18 \text{mH} \\ Flameproof Enclosure "d": \\ Ex I 2G / D \\ Ex d IC T5 Gb (-40 ^{\circ}C \leq Ta \leq +85 ^{\circ}C) \\ Ex d IC T6 Gb (-40 ^{\circ}C \leq Ta \leq +85 ^{\circ}C) \\ Ex tb IIC T_{200} \text{100 }^{\circ}C Db (-40 ^{\circ}C \leq Ta \leq +85 ^{\circ}C) \\ Ex tb IIC T_{200} \text{85 }^{\circ}C Db (-40 ^{\circ}C \leq Ta \leq +85 ^{\circ}C) \\ Ex tb IIC T_{200} \text{85 }^{\circ}C Db (-40 ^{\circ}C \leq Ta \leq +65 ^{\circ}C) \\ 45 Vdc max \\ (M) Combination (K) + (X) \\ Intrinsic Safety "i": \\ Ex ia IIC T4 Ga (-40 ^{\circ}C \leq Ta \leq +60 ^{\circ}C) \\ Ex ia IIC T5 Ga (-40 ^{\circ}C \leq Ta \leq +60 ^{\circ}C) \\ Ex ia IIC T5 Ga (-40 ^{\circ}C \leq Ta \leq +60 ^{\circ}C) \\ Ex ia IIC T_{200} 100 ^{\circ}C Da (-40 ^{\circ}C \leq Ta \leq +50 ^{\circ}C) \\ IP 66 / 67 \\ Ui \leq 28 \text{Vdc}, \ Ii \leq 110 \text{mA}, \ Pi \leq 0.77 \text{W} \\ Ci = 14.9 \text{nF}_{(1)} / 26.0 \text{nF}_{(2)} \text{Li} = 0.18 \text{mH} \\ Flameproof Enclosure "d": \\ Ex d IIC T5 Gb (-40 ^{\circ}C \leq Ta \leq +85 ^{\circ}C) \\ Ex d IIC T6 Gb (-40 ^{\circ}C \leq Ta \leq +65 ^{\circ}C) \\ Ex tb IIIC T_{200} 100 ^{\circ}C Db (-40 ^{\circ}C \leq Ta \leq +85 ^{\circ}C) \\ Ex tb IIIC T_{200} 100 ^{\circ}C Db (-40 ^{\circ}C \leq Ta \leq +85 ^{\circ}C) \\ Ex tb IIIC T_{200} 100 ^{\circ}C Db (-40 ^{\circ}C \leq Ta \leq +85 ^{\circ}C) \\ Ex tb IIIC T_{200} 100 ^{\circ}C Db (-40 ^{\circ}C \leq Ta \leq +85 ^{\circ}C) \\ Ex tb IIIC T_{200} 100 ^{\circ}C Db (-40 ^{\circ}C \leq Ta \leq +85 ^{\circ}C) \\ Ex tb IIIC T_{200} 100 ^{\circ}C Db (-40 ^{\circ}C \leq Ta \leq +85 ^{\circ}C) \\ Ex tb IIIC T_{200} 100 ^{\circ}C Db (-40 ^{\circ}C \leq Ta \leq +85 ^{\circ}C) \\ Ex tb IIIC T_{200} 100 ^{\circ}C Db (-40 ^{\circ}C \leq Ta \leq +85 ^{\circ}C) \\ Ex tb IIIC T_{200} 100 ^{\circ}C Db (-40 ^{\circ}C \leq Ta \leq +85 ^{\circ}C) \\ Ex tb IIIC T_{200} 100 ^{\circ}C Db (-40 ^{\circ}C \leq Ta \leq +85 ^{\circ}C) \\ Ex tb IIIC T_{200} 100 ^{\circ}C Db (-40 ^{\circ}C \leq Ta \leq +85 ^{\circ}C) \\ Ex tb IIIC T_{200} 100 ^{\circ}C Db (-40 ^{\circ}C \leq Ta \leq +85 ^{\circ}C) \\ Ex $							
Flameproof Enclosure "d": Ex II 2G/D Ex d IIC T5 Gb (-40°C \leq Ta \leq +85°C) Ex d IIC T6 Gb (-40°C \leq Ta \leq +65°C) Ex tb IIIC T $_{200}$ 100°C Db (-40°C \leq Ta \leq +85°C) Ex tb IIIC T $_{200}$ 85°C Db (-40°C \leq Ta \leq +85°C) Ex tb IIIC T $_{200}$ 85°C Db (-40°C \leq Ta \leq +65°C) 45 Vdc max (M) Combination (K) + (X) Intrinsic Safety "i": Ex ia IIC T4 Ga (-40°C \leq Ta \leq +60°C) Ex ia IIC T5 Ga (-40°C \leq Ta \leq +50°C) Ex ia IIIC T5 Ga (-40°C \leq Ta \leq +60°C) Ex ia IIIC T $_{200}$ 100°C Da (-40°C \leq Ta \leq +50°C) IP 66/67 Ui \leq 28Vdc, Ii \leq 110mA, Pi \leq 0.77W Ci = 14.9nF ₍₁₎ /26.0nF ₍₂₎ Li = 0.18mH Flameproof Enclosure "d": Ex d IIC T5 Gb (-40°C \leq Ta \leq +85°C) Ex d IIC T6 Gb (-40°C \leq Ta \leq +85°C) Ex tb IIIC T $_{200}$ 100°C Db (-40°C \leq Ta \leq +85°C)							
Ex II 2G/D							
$(X) \begin{tabular}{l l l l l l l l l l l l l l l l l l l $							
$(X) \begin{tabular}{l l l l l l l l l l l l l l l l l l l $							
	0						
Ex tb IIIC $T_{200}85^{\circ}\text{C Db } (-40^{\circ}\text{C} \le \text{Ta} \le +65^{\circ}\text{C})$ 45 Vdc max (M) Combination (K) + (X) Intrinsic Safety "i": Ex ia IIC T4 Ga (-40^{\circ}\text{C} \le \text{Ta} \le +60^{\circ}\text{C}) Ex ia IIC T5 Ga (-40^{\circ}\text{C} \le \text{Ta} \le +50^{\circ}\text{C}) Ex ia IIIC $T_{200}135^{\circ}\text{C Da } (-40^{\circ}\text{C} \le \text{Ta} \le +50^{\circ}\text{C}) Ex ia IIIC T_{200}135^{\circ}\text{C Da } (-40^{\circ}\text{C} \le \text{Ta} \le +50^{\circ}\text{C}) IP 66/67 Ui \le 28Vdc, Ii \le 110\text{mA}, Pi \le 0.77\text{W} Ci = 14.9\text{nF}_{(1)}/26.0\text{nF}_{(2)} \text{Li} = 0.18\text{mH} Flameproof Enclosure "d": Ex d IIC T5 Gb (-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C}) Ex d IIC T6 Gb (-40^{\circ}\text{C} \le \text{Ta} \le +65^{\circ}\text{C}) Ex tb IIIC T_{200}100^{\circ}\text{C Db } (-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C})$,						
The standard continuous contin							
$(M) \qquad \text{Combination (K) + (X)} \\ \textbf{IECEx} \\ (T) \qquad \begin{aligned} &\text{Intrinsic Safety "i":} \\ &\text{Ex ia IIC T4 Ga (-40°C \le Ta \le +60°C)} \\ &\text{Ex ia IIC T5 Ga (-40°C \le Ta \le +50°C)} \\ &\text{Ex ia IIIC T}_{200}135°C Da (-40°C \le Ta \le +60°C)} \\ &\text{Ex ia IIIC T}_{200}100°C Da (-40°C \le Ta \le +50°C)} \\ &\text{IP 66/67} \\ &\text{Ui \le 28Vdc, Ii \le 110mA, Pi \le 0.77W} \\ &\text{Ci = 14.9nF}_{(1)}/26.0nF}_{(2)} Li = 0.18mH} \\ &\text{Flameproof Enclosure "d":} \\ &\text{Ex d IIC T5 Gb (-40°C \le Ta \le +85°C)} \\ &\text{Ex d IIC T6 Gb (-40°C \le Ta \le +85°C)} \\ &\text{Ex tb IIIC T}_{200}100°C Db (-40°C \le Ta \le +85°C)} \end{aligned}$							
Intrinsic Safety "i": Ex ia IIC T4 Ga (-40°C \leq Ta \leq +60°C) Ex ia IIC T5 Ga (-40°C \leq Ta \leq +50°C) Ex ia IIIC T ₂₀₀ 135°C Da (-40°C \leq Ta \leq +50°C) Ex ia IIIC T ₂₀₀ 100°C Da (-40°C \leq Ta \leq +50°C) IP 66/67 Ui \leq 28Vdc, Ii \leq 110mA, Pi \leq 0.77W Ci $=$ 14.9nF ₍₁₎ /26.0nF ₍₂₎ Li $=$ 0.18mH Flameproof Enclosure "d": Ex d IIC T5 Gb (-40°C \leq Ta \leq +85°C) Ex d IIC T6 Gb (-40°C \leq Ta \leq +85°C) Ex tb IIIC T ₂₀₀ 100°C Db (-40°C \leq Ta \leq +85°C)	(1)						
$(T) \begin{tabular}{ll} Ex ia IIC T4 Ga (-40^{\circ}C \le Ta \le +60^{\circ}C) \\ Ex ia IIC T5 Ga (-40^{\circ}C \le Ta \le +50^{\circ}C) \\ Ex ia IIIC T_{200}135^{\circ}C Da (-40^{\circ}C \le Ta \le +60^{\circ}C) \\ Ex ia IIIC T_{200}100^{\circ}C Da (-40^{\circ}C \le Ta \le +50^{\circ}C) \\ IP 66/67 \\ Ui \le 28Vdc, Ii \le 110mA, Pi \le 0.77W \\ Ci = 14.9nF_{(1)}/26.0nF_{(2)} Li = 0.18mH \\ Flameproof Enclosure "d": \\ Ex d IIC T5 Gb (-40^{\circ}C \le Ta \le +85^{\circ}C) \\ Ex d IIC T6 Gb (-40^{\circ}C \le Ta \le +65^{\circ}C) \\ Ex tb IIIC T_{200}100^{\circ}C Db (-40^{\circ}C \le Ta \le +85^{\circ}C) \\ \hline \end{tabular}$	(.						
$(T) \begin{tabular}{ll} Ex ia IIC T5 Ga (-40^{\circ}C \le Ta \le +50^{\circ}C) \\ Ex ia IIIC T_{200}135^{\circ}C Da (-40^{\circ}C \le Ta \le +60^{\circ}C) \\ Ex ia IIIC T_{200}100^{\circ}C Da (-40^{\circ}C \le Ta \le +50^{\circ}C) \\ IP 66/67 \\ Ui \le 28Vdc, Ii \le 110mA, Pi \le 0.77W \\ Ci = 14.9nF_{(1)}/26.0nF_{(2)} Li = 0.18mH \\ Flameproof Enclosure "d": \\ Ex d IIC T5 Gb (-40^{\circ}C \le Ta \le +85^{\circ}C) \\ Ex d IIC T6 Gb (-40^{\circ}C \le Ta \le +65^{\circ}C) \\ Ex tb IIIC T_{200}100^{\circ}C Db (-40^{\circ}C \le Ta \le +85^{\circ}C) \\ \hline \end{tabular}$							
$(T) \begin{tabular}{ll} \hline Ex ia IIIC T_{200}135°C Da $(-40°C \le Ta \le +60°C)$ \\ \hline Ex ia IIIC T_{200}100°C Da $(-40°C \le Ta \le +50°C)$ \\ \hline IP $66/67$ \\ \hline Ui \le 28Vdc, $Ii \le 110mA, $Pi \le 0.77W$ \\ \hline Ci = 14.9nF_{(1)}/26.0nF_{(2)}$ Li = 0.18mH$ \\ \hline Flameproof Enclosure "d": \\ \hline Ex d IIC $T5$ Gb $(-40°C \le Ta \le +85°C)$ \\ \hline Ex d IIC $T6$ Gb $(-40°C \le Ta \le +65°C)$ \\ \hline Ex tb IIIC T_{200}100°C Db $(-40°C \le Ta \le +85°C)$ \\ \hline \end{tabular}$							
$ \begin{array}{l} \text{Ex ia IIIC T_{200}100°C Da $(-40°C \le Ta \le +50°C)$} \\ \text{IP $66/67$} \\ \text{Ui ≤ 28Vdc, Ii $\le 110\text{mA}, Pi ≤ 0.77W$} \\ \text{Ci $= 14.9nF_{(1)}/26.0nF_{(2)}$ Li $= 0.18$mH} \\ \\ \text{Flameproof Enclosure "d":} \\ \text{Ex d IIC $T5$ Gb $(-40°C \le Ta \le +85°C)$} \\ \text{Ex d IIC $T6$ Gb $(-40°C \le Ta \le +65°C)$} \\ \text{Ex tb IIIC T_{200}100°C Db $(-40°C \le Ta \le +85°C)$} \\ \end{array} $							
$ P 66/67 \\ Ui \leq 28Vdc, \ Ii \leq 110mA, \ Pi \leq 0.77W \\ Ci = 14.9nF_{(1)}/26.0nF_{(2)} \ Li = 0.18mH \\ Flameproof Enclosure "d": \\ Ex d IIC T5 Gb (-40°C \leq Ta \leq +85°C) \\ Ex d IIC T6 Gb (-40°C \leq Ta \leq +65°C) \\ Ex tb IIIC T_{200}100°C Db (-40°C \leq Ta \leq +85°C)$	(
$(R) \begin{tabular}{ll} Ui \le 28Vdc, Ii \le 110mA, Pi \le 0.77W \\ \hline Ci = 14.9nF_{(1)}/26.0nF_{(2)} Li = 0.18mH \\ \hline Flameproof Enclosure "d": \\ \hline Ex d IIC T5 Gb (-40 °C \le Ta \le +85 °C) \\ \hline Ex d IIC T6 Gb (-40 °C \le Ta \le +65 °C) \\ \hline Ex tb IIIC T_{200}100 °C Db (-40 °C \le Ta \le +85 °C) \\ \hline \end{tabular}$							
$ (R) \begin{tabular}{ll} \hline Ci = 14.9nF_{(1)}/26.0nF_{(2)} Li = 0.18mH \\ \hline Flameproof Enclosure "d": \\ \hline Ex d IIC T5 Gb (-40 °C \le Ta \le +85 °C) \\ \hline Ex d IIC T6 Gb (-40 °C \le Ta \le +65 °C) \\ \hline Ex tb IIIC T_{200}100 °C Db (-40 °C \le Ta \le +85 °C) \\ \hline \hline \end{tabular} $							
Flameproof Enclosure "d": Ex d IIC T5 Gb (-40 °C \leq Ta \leq +85 °C) Ex d IIC T6 Gb (-40 °C \leq Ta \leq +65 °C) Ex tb IIIC T ₂₀₀ 100 °C Db (-40 °C \leq Ta \leq +85 °C)							
(R)							
(R) Ex d IIC T6 Gb (-40°C \leq Ta \leq +65°C) Ex tb IIIC T ₂₀₀ 100°C Db (-40°C \leq Ta \leq +85°C)							
(R) Ex tb IIIC $T_{200}100^{\circ}C$ Db (-40°C \leq Ta \leq +85°C)							
	(F						
Ex tb IIIC T_{200} 85°C Db (-40°C \leq Ta \leq +65°C) 45 Vdc max							
	//						
(N) Combination (T) + (R) CCSAus Intrinsic Safety/Non Incendive/Class 1 Division							
,	5						
IS Class I Division 1, Groups ABCD Ex ia							
Class II Groups EFG: Class III							
NI Class I Division 2, Groups ABCD							
(J) (Per control drawing)	(,						
Class I Division 2, Groups ABCD							
T4 (-40°C ≤ Ta ≤ +60°C) T5 (-40°C ≤ Ta ≤ +50°C)							
Ui ≤ 28Vdc, li ≤ 110mA, Pi ≤ 0.77W							
Ci = 14.9nF ₍₁₎ /26.0 nF ₍₂₎ Li = 0.18mH							
Explosion proof							
XP Class I Division 1, Groups CD Class II Groups EFG: Class III							
(E) Class II Groups EFG: Class III T5 (-40°C ≤ Ta ≤ +85°C)	(E						
$T6 (-40^{\circ}C \le Ta \le +65^{\circ}C)$							
Vmax = 42.4Vdc	/1						
(L) Combination (J) + (E)	(1						
ATEX IECEx cCSAus (W) Combination (K) + (X) + (T) + (R) + (J) + (E)							

⁽¹⁾ Without optional arrester

Configuration:

Configuration of the FCX-AIV series of pressure transmitters can be carried out by either using a HART device or the 3 push-buttons optional indicator.

A third party HART device can be used in combination with Fuji Electric FCX-AIV HART Device Description files. (https://fieldcommgroup.org).

Functions		HAF Proto		3 push to optional i	
		Display	Set	Display	Set
Tag Nb		V	V	V	V
Model Nb		v	V	v	V
Serial Nb & Softwa	re revision	v	_	v	_
Engineering units		v	V	v	V
Upper Range Value	•	v	_	v	_
Measuring Range		v	v	v	v
Damping		v	V	v	v
Output signal type	Linear	v	V	v	V
Output signal type	Square Root	v	V	v	V
Burnout current		v	V	v	v
Calibration		v	V	v	v
Output Adjust		_	V	_	v
Measuring Value		v	_	v	
Self Diagnosis		v	_	v	
External Adj Screw	Lock	v	V	v	V
Transmitter Display	,	v	V	v	V
Linearization		v	V	v	v
Rerange		v	V	v	v
Saturation Current		v	V	v	V
Write Protect		v	V	v	V
History - Calibration History - Ambient T° History		v v	v —	v v	<u>v</u>

Zero and span adjustment:

Zero and span are remotly adjustable by a HART device or locally by the three pusch-buttons LCD unit or the external adjustment screw.

Damping:

The damping time constant can be adjusted within the range of [0.04 to 32] seconds.

Zero elevation/suppression:

Zero can be adjusted within the range of -1 bar to 100% of the URL of the sensor.

Normal/reverse action:

Selectable by range setting

Local indicator:

Optional 5-digits LCD unit with 3 push-buttons and magnetic switches. A magnetic pen is required to enable this feature (please refer to the "Accessories" section).

Saturation currents:

Lower limit: 3.6 to 4.0mA, Default value: 3.8mA Upper limit: 20.0 to 21.6mA, Default value: 20.8mA

Burnout direction and output current:

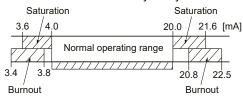
In the self-diagnostic functions detect a transmitter failure, the burnout function will drive the output signal to either "Output Hold", "Output Overscale" or "Output Underscale" modes.

When "Output Hold":

The output signal is held as the latest value just before the failure happens.

When "Output Overscale":

The output signal is set within the range of [20.8 to 22.5] mA, Default value: 21.6mA


When "Output Underscale":

The output signal is set within the range of [3.4 to 3.8] mA, Default value: 3.6mA

⁽²⁾ With optional arrester

IEC 61511 considerations:

For safety applications, the "Output Hold" MUST NOT be used. Only "Output Overscale" and "Output Underscale" must be used to clearly notify a "failure" state.

Loop-check / fixed output current:

The transmitter can be configured to provide a constant output signal from 3.4 up to 22.5 mA.

Temperature limit:

Ambient

-40 to +85°C

-20 to +80°C (with the optional LCD unit)

-40 to +60°C (with the optional arrester)

Please refer to the hazardous locations table for ambient temperature limitations according to the standard and type of protection.

Process: Please refer to the remote seal section and type of filling fluids.

Storage: -40 to +90°C

Humidity limit:

0 to 100% RH (Relative Humidity)

PERFORMANCE SPECIFICATIONS

Reference conditions, silicone oil filling, SS 316L isolating diaphragms, 4-20 mA analog output in linear mode

Accuracy rating:

(including linearity, hysteresis, and repeatability)

For span > 1/10 of URL:

±0.1 % of calibrated span (FKP)

±0.2 % of calibrated span (FKH)

For span > 1/10 of URL:

$$\pm \left(0.05+0.005 \frac{\text{URL}}{\text{Span}}\right) \% \text{ of span (FKP)}$$

$$\pm \left(0.1+0.01 \frac{\text{URL}}{\text{Span}}\right) \% \text{ of span (FKH)}$$

Stability:

±0.2% of URL for 10 years

Temperature effect:

Effect per 28°C change between

the limits of -40 and +85°C.

Model FKP:

Zero shift: ±(0.4+0.1 URL Span)% / 28°C

Total effect: $\pm (0.475+0.1 \frac{URL}{Span})\% / 28^{\circ}C$

Model FKH:

Zero shift: ±(0.4+0.2 URL Span)% / 28°C

Total effect: ±(0.475+0.2_URL_Span)% / 28°C

Overrange effect:

Zero shift, 0.3% of URL

for any overrange to maximum limit

Supply voltage effect:

< 0.005% of calibrated span per 1 V.

Update rate: 40 msec Turn on time: 6 sec Response time:

(at 63.3% of output signal without electrical damping)

Time constant: 0.08 sec at 23°C Dead time: about 0.06 sec

Response time = time constant + dead time

Electromagnetic compatibility:

FCX-AIV transmitters are in accordance with the following harmonized standards:

EN 61326-1

EN 61326-2-3

EN 61326-3-1

RFI effect:

< 0.2% of the URL for the frequencies from 20 up to 1000 MHz with an electrical field strength of 10 V/m and housing covers in place. (Classification: 2-abc: 0.2% of span according SAMA PMC 33.1).

Mounting position effect:

Zero shift:

Less than 0.1kPa (1mbar) for a 10° tilt in any position. This error can be corrected by adjusting zero. (Double the effect for fluorinated fill sensors.) No effect on span

Vibration effect:

< ±0.25% of spans for spans greater than 1/10 of URL. Frequency 10 to 150 Hz, acceleration 29.4 m/sec²

Dielectric strength:

500 V AC, 50/60 Hz 1 min., between circuit and earth (except with the optional arrester)

Insulation resistance:

More than 100 M Ω at 500 V DC.

Internal resistance for external field indicator:

12Ω Max (connected to test terminal CK+ and CK-)

Pressure equipment directive (PED) 2014/68/EU:

According to Article 4.3

PHYSICAL SPECIFICATIONS

Electrical conduit connection:

1/2-14 NPT, M20 × 1.5 or Pg13.5

Non wetted parts material:

Electronic housing:

Low copper die-cast aluminum alloy with polyester coating (standard) or SS 316L (option)

Mounting bracket: SS 316L

Environmental protection: IP66, IP67 and Type 4X

Mounting:

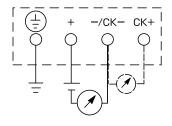
Direct mounting (rigid assembly)

With the optional mounting bracket for 50 mm (2") pipe

Weight:

Refer to the page 9 and 10

Diaphragm seal(s):


Please refer to the remote seal section for detailled specifications.

ACCESSORIES

Magnet pen:

To be used with the 3 push-buttons optional indicators. Order number = ZZP*TQ507742C1

CONNECTION DIAGRAM

OPTIONAL FEATURES

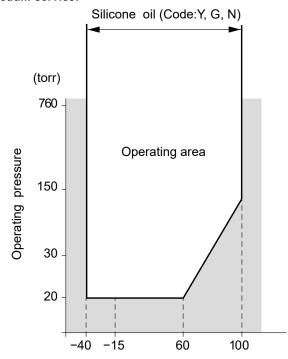
Local indicator:

An optional 5 digit indicator with engineering units is available.

A local configuration can be carried out using the 3 push-buttons version with magnetic switches.

A separately ordered magnet pen is required for adjustment using the 3 magnetic switches (please refer to the "Accessories" section).

Arrester:


A built-in arrester protects the electronics from lightning surges.

Lightning surge immunity: ±4 kV (1.2 × 50 μs)

Optional tag plate:

An extra stainless steel tag plate with customer tag data is wired to the transmitter to the transmitter.

Vacuum service:

Relation between process temperature and operating pressure

MODEL CODE SYMBOLS FKP...F

1 2 3 4	5	6	7	8		9	10	11	12	13						
F K P				6	-					Υ			DES	CRIPTION		
												Туре				
												Gauge pressure with re	mote seal - Smart. 4-2	20 mA+ HART commur	nication protocol	
	 											Conduit connection	Enclosure type			
Т												1/2 - 14 NPT				
													"L" shape			
V	-											Pg 13,5	L shape			
W	-											M20 x 1,5				
6												1/2 -14 NPT				
7												Pg13,5	"T" shape			
8												M20 x 1,5				
<u> </u>											(1)	Diaphragm seal rating				
	2											PN 25				
	4											PN 20 - 150 lbs				
	6											PN 50 - 300 lbs				
	8											PN 40				
	9											PN 16				
	L											PN 100 - 600 lbs				
	_										(2)		ring range 0min to			
		1									(3)			kPag / 01.18 to 18.8		
		2										0312.5 to 5000 ml	parg / 031.25 to 500	kPag / 04.53 to 72.5	2 psig	
		3												Pag / 027.20 to 435.1		
		4										06.25 to 100 barg	/ 00.625 to 10 MPa	g / 090.65 to 1450.38	3 psig	
			V													
				6								Design revision numb	er			
												Indicator		Arrester		
						Α						None		none		
						Е						None		yes		
						L						Digital, 0-100%		none		
	P				Р						Digital, Custom scale		none			
						Q						Digital, 0-100%		yes		
						S						Digital, Custom scale		you		
						1						Digital, 0-100% with pu		none		
						2						Digital, Custom scale w	ith push button			
						4						Digital, 0-100% with pu	sh button	yes		
						5						Digital, Custom scale w	ith push button	ycs		
												Hazardous location ap	provals			
							Α					None				
							Х				(4)	ATEX - Flameproof				
							к					ATEX - Intrinsic Safety				
							М	Г			(4)	ATEX - Combination Fl	ameproof and Intrinsic	Safety		
							E					cCSAus - Explosion pro		,		
							J				\ ''	cCSAus - Intrinsic Safe				
							L				(4)	cCSAus -Combination		sic Safety and Non Inc	endive	
							R	\vdash			` '	IECEx - Flameproof		5.5 Saloty and Non IIIO	aivo	
							T	 			(4)	IECEx - Intrinsic Safety				
								<u> </u>			(4)	·		o Sofoty		
							N	<u> </u>	-		(4)	IECEx - Combination F		<u> </u>	l Non Ing	
							W				(4)	IECEx - ATEX - cCSAu			I NON INCENDIVE	
								_				Assembling design		ature correction		
								В				Capillary		hragm seal assembly		
								G						smitter		
								L S				Rigid		hragm seal assembly smitter		
												Stainless steel parts	ırans	onnite!		
											l	Tag plate	Housing			
									Υ	Υ		None	_			
									В	Y		Yes	None			
									С	Y		None				
									E	Y	Т	Yes	Yes			
										·	_					

- 1- The flange rating is according to the Maximum Working Pressure
- 2- A turn down ratio ≤ 10is recommended for optimal performances
- 3- For DN \leq 50, please consult Fuji Electric regarding process conditions 4- Only with Digit 4 = "T", "W", "6", "8"

MODELS CODE SYMBOLS FKH...F

1 2 3	4	5	6	7	8		9	10	11	12	13						
F K H					6	- 1					Υ			DES	CRIPTION		
	П												Туре				
													Absolute pressure with	remote seal - Smart, 4	4-20 mA+ HART comm	nunication protoco	I
	П												Conduit connection	Enclosure type			
	T												1/2 - 14 NPT				
	v												Pg 13,5	"L" shape			
	l _w												M20 x 1,5				
	6												1/2 -14 NPT				
	7												Pg13,5	"T" shape			
	8		-										M20 x 1,5	·			
	L	\dashv	-									(1)	Diaphragm seal rating				
		2										(1)	PN 25				
		4											PN 20 - 150 lbs				
		6											PN 50 - 300 lbs				
		8											PN 40				
		9											PN 16				
		L											PN 100 - 600 lbs				
	•											(2)	Measu	ring range 0min to	max		_
			2									(3)			I30 kPa abs / 01.18		_
			3												500 kPa abs / 04.53		
		Į	4										01.875 to 30 bar a	abs / 0187.5 to 3000	kPa abs / 027.20 to	435.11 psi abs	
			Į	V													
					6								Design revision numb	er			
													Indicator		Arrester		
							Α						None		none		
							Е						None		yes		
							L						Digital, 0-100%		none		
							Р						Digital, Custom scale				
							Q						Digital, 0-100%		yes		
							S 1						Digital, Custom scale Digital, 0-100% with pus	h hutton			
							2						Digital, Custom scale w		none		
							4							-			
							5						Digital, 0-100% with pus Digital, Custom scale w		yes		
													Hazardous location ap				
								١,	_					provais			
								A	-			(4)	None				
								X	-			(4)	ATEX Intringia Sofoty				
								K	-			(4)	ATEX - Intrinsic Safety	amonroof and Intrin!-	Sofoty		
								М				(4)	ATEX - Combination Fla		Jaiety		
								E	-			(4)	cCSAus - Explosion pro				
								J	-			(4)	cCSAus - Intrinsic Safe	•	oio Cofoty and Non Inc	ondivo	
								L R				(4)	cCSAus -Combination I IECEx - Flameproof	_xpiosion prooi, intrin	SIC SAIELY AND INON INC	endive	
								T	_			(4)	IECEx - Flameproof IECEx - Intrinsic Safety				
								N				(4)	· · · · · · · · · · · · · · · · · · ·		c Safety		
								W				(4)	IECEX - Combination F			d Non Incandition	
								VV	\vdash			(4)	IECEx - ATEX - cCSAu			I NOU INCENDIVE	
													Assembling design		ature correction hragm seal assembly		
									B G				Capillary				
									L				Dist. I		smitter hragm seal assembly		
									S				Rigid		smitter		
													Stainless steel parts	ı mans		!	
													Tag plate	Housing			
										Υ	Υ		None				
										В	Y		Yes	None			
										С	Y		None	Vaa			
										Е	Υ		Yes	Yes			

Notes:

- 1- The flange rating is according to the Maximum Working Pressure
- 2- A turn down ratio ≤ 10is recommended for optimal performances
- 3- For DN ≤ 50, please consult Fuji Electric regarding process conditions
- 4- Only with Digit 4 = "T", "W", "6", "8"

SEAL DIAPHRAGMS

DATA SHEET S

Fuji Electric remote seal diaphragms are dedicated to accurately measure level, density, flow and line pressure in heavy process conditions.

The use of remote seal diaphragms avoids the measuring cell of the transmitter to be directly in contact with the process conditions

The various architectures and the full welded construction provide to the Fuji Electric remote seal diaphragm product offer an excellent reliability in harsh processing conditions such as high static pressure, temperature and corrosiveness as well as viscous, clogging or abrasive processes..

FEATURES

1. Construction

Connection of the remote seal to the measuring cell diaphragms can be done either by a rigid (direct) or capillary architectures. The full welded Fuji Electric design allows a free of gasket path between the remote seal and the differential or gauge measuring cell of the FCX-A IV pressure transmitters.

Depending the nature of the process, specific filling fluids are available to ensure the optimal transmission of the process pressure to the measuring cell.

2. Operating principle

The pressure is applied on the remote seal and transferred by the filling fluid through the capillary path to the measuring cell of the pressure transmitter.

3. Wide variety of materials selection

Depending the process conditions, wetted or non-wetted parts and filling fluids can be selected thanks to the model code definition.

Wetted parts:

SS 316L, Tantalum, Hastelloy, Monel, Titanum,

Zirconium, SS 316L with Gold or PFA coating.

Non wetted parts:

SS 316L

Filling fluids:

Standard silicone, fluorinated, sanitary, high temperature and vacuum specific oils. For specific process conditions, please consult Fuji Electric.

4. Diaphragm seal types

FCX-AIV series of pressure transmitters can communicate using the universal HART communication protocol. By the use of the HART Device Description files, HART compatible devices can communicate with any FCX-AIV transmitter.

5. Application flexibility

According to the connection type and operating conditions different seal types can be defined:

Flush mounting design from DN40 to DN100.

Diaphragm with extensions (50 to 200 mm).

Flanged or screwed adapters

Sanitary applications according to DIN or SMS standards.

For specifics needs, please consult Fuji Electric.

FUNCTIONAL SPECIFICATIONS

Type:

The remote seal can be assembled on the transmiter either by a direct (rigid) connection (as for level measurement at the bottom of a tank) or by capillary (distant measuring point, high temperature process).

The rigid assembling can be either "long design" (in line) or "short design" (90°) as shown in the outline dimension drawings.

	Туре	Rigid mounting	Capillary mounting
	FKB	Short or long design	HP side
•	FKD	Short design on HP side and capillary on LP side	HP and LP side HP side

Capillary tube specifications:

Standard capillary lengthes:

1.5 / 3 / 6 m (other upon request)

Inside diameter:

1 mm standard

 $2\ \mbox{mm}$ for vacuum service, high process temperature applications, short response time requirements

Smallest bending radius of the capillary: 100 mm

Capillary tube shealding possibilities:

Temperature limit:

PVC sleeve: -10 to 80°C Stainless

steel sheald: -40 to 350°C

Process connection possibilities:

- For flush mounting
- With extension
- With mounting adapters (flanged or screwed).

The mounting adapter is dedicated to either adapt the remote seal to a specific process connection or increase the sensibilty of the measuring diaphragm.

Temperature limits:

Ambiant temperature:

-40 to 85°C for transmitter

Process temperature:

-40 to 150°C for rigid mounting, 0 to 350°C for capillary design and high temperature filling fluid.

Pressure limits:

Working pressure:

Limited by the smallest value between the nominal flange rating of the seal diaphragm and the maximum working pressure of the transmitter.

Vacuum limit :

Depends on the limit of the measuring cell and the filling fluid of the remote seal. For the differential or gauge pressure transmitter with the silicone oil, the vacuum limit is 20 Torr or 27 mbar abs.

PERFORMANCE SPECIFICATIONS

To evaluate the global performances, both the transmitter and the remote seal diaphragm performances must be considered under the reference conditions: standard silicone oil filling, SS 316L seal diaphragm, 4-20 mA output in linear mode.

Accuracy:

Assembling 1 or 2 remote seal diaphragms on a transmitter increases the accuracy error at reference conditions by 0,1% of the span.

Ambiant temperature effect:

Effect when only transmitter is corrected. (See 11th model code G, S, T of the FKB and code G, H of the FKD).

Transmitters		Effect (m	nbar/10°C)	
Seals	FKB Gauge pressure	Capillary (/m)	FKD Differential pressure	Capillary (/m)
DN 50/2" - SS 316L diaphragm	2.03	1.5	0.48	0.32
DN 80/3" - SS 316L diaphragm	0.11	0.08	0.04	0.03
DN 80/3" - other diaphragm materials	0.22	0.2	0.05	0.07
DN 100/4" - SS 316L diaphragm	0.04	0.03	0.02	0.01
Adaptor - SS 316L diaphragm	0.11	0.08	0.04	0.03

Note: The indicated values are in mbar/10°C for capillary length of 1m and internal capillary tube \emptyset of 1 mm

Effect when both the transmitter and the seal assembly are corrected. (See 11th model B, L, M of the FKB and B, C, E of the FKD).

The correction of the zero drift can be done at factory level on the complete system (transmitter and remote seals) by an additional temperature correction operation.

A thermal isolation or a heating of the capillaries minimises the ambient temperature effect.

Ambiant temperature effect:

Effect when only transmitter is corrected. (See 11th model code G, S, T of the FKB and code G, H of the FKD).

·	•	,
Transmitten	Effect (n	nbar/10°C)
Transmitters	FKB Gauge pressure	FKD Differential pressure
DN 50/2" - SS 316L diaphragm	1.24	0.5
DN 80/3" - SS 316L diaphragm	0.17	0.09
DN 80/3" - other diaphragm materials	0.73	0.22
DN 100/4" - SS 316L diaphragm	0.08	0.05
Adaptor - SS 316L diaphragm	0.17	0.09

Static pressure effect for differential pressure transmitter with stainless steel diaphragms (FKD transmitter with DN80 and DN100 seals):

Zero shift:

± 0.2% of URL for flange rating, up to 40 bar or 300 lbs

Response time: (mean values)

Filling fluid	7 th model	Response time constant (sec)			
Filling Iluiu	code	0 to 320 mbar	0 to 1.3 bar		
Std silicone oil	Y, G, N	0.15	0.037		
Fluorinated oil	W, A, D	0.17	0.04		
Oil for vaccum or high temperature	U, X	0.25	0.065		

The indicated values are in seconds per meter of capillary length with internal tube diameter Ø1 mm.

The indicated response time is based on a pressure change of 0 to 100% of the calibrated span at reference temperature of 20°C.

The indicated values do not include the response time of the transmitter.

Filling fluid of the diaphragm seals:

7 th model	Designation	Temperature r	resistance (°C)	Density
code	Designation	P abs ≥ 1 bar		(25°)
Y, G, N	Silicone oil	-40 to 180	-40 to 120	0.95
W, D, A	Fluorinated oil	-20 to 200	-20 to 120	1.84
F	Sanitary oil	-10 to 250	-10 to 120	0.94
V	Silicone oil		20 to 200	1.07
U	Silicone oil	0 to 300	20 to 200	1.07
Χ	Silicone oil	-10 to 350	20 to 200	1.09

The values and limits are indicated for the most common applications (standard filling fluids).

Please consult Fuji Electric for special applications indicat-ing your temperature, pressure and vacuum conditions (vacuum and temperature can occure together).

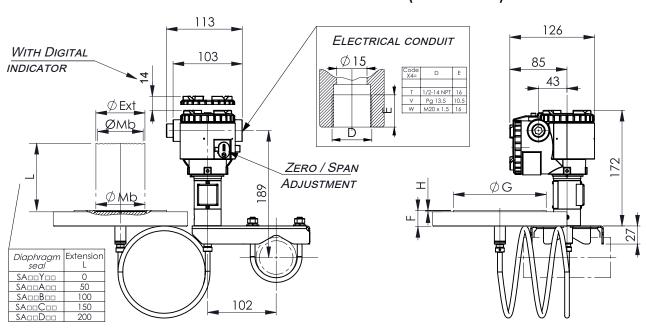
Other filling fluids can be used for your applications.

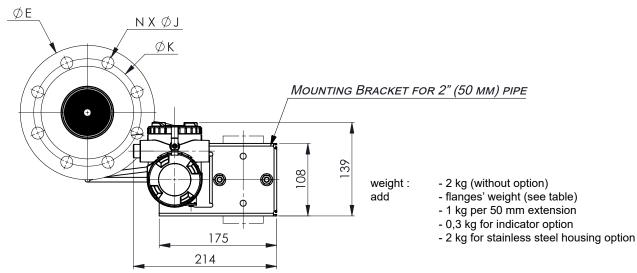
MODELS CODE SYMBOLS FKH...F

_1	2	3	4	5	6	7		8					
s							-	_			DESCRIPTION		
										Remote seal diaphragms			
										Flange / Capillary connection			
	Α									Axial			
	R									Radial - Not possible with rigid asse	mbling design (digit 6 = "R")		
	W									Wafer type - Not possible with rigid	assembling design (digit 6 ="R")		
									(1)	Flanges RF (flange size and rating	g)		
		4								ANSI-150 Lbs 3" / ISO PN20 DN80			
		5								ANSI-150 Lbs 4" / ISO PN20 DN10	0		
		6								ANSI-300 ILbs 3" / ISO PN50 DN80			
		7								ANSI-300 Lbs 4" / ISO PN50 DN100	0		
		8								DIN PN40 DN80			
		9								DIN PN16 DN100			
		Н							(2)	ANSI - 150 lbs 2" / ISO PN20 DN50			
		J							(2)	ANSI - 300 lbs 2" / ISO PN50 DN50			
		G							(2)	DIN PN40 DN50			
		К							(11)	G 2" screwed seal			
		L							(11)	G 1 1/2" screwed seal			
		U								PN25 DN50 - coupling nuts	DIN 118	51 Digit	4 = "V" only
		V								PN40 DN50 - coupling nuts	SMS	Digit	4 = "V" only
		w								PN40 DN50 - seal only	Clamp	Digit	4 = "V" only
		Х								No dead volume	Sanitary	Digit	4 = "V" only
		Α							(3)	Flange adapter PN40 DN25		Digit	4 = "V" only - others upon request
		В							(3)	Flange adapter ISO PN20 DN25 (1"	'-150 ANSI)	Digit	4 = "V" only - others upon request
		С							(3)	Flange adapter ISO PN50 DN25 (1"	'- 300 ANSI)	Digit	4 = "V" only - others upon request
		D							(3)	Flange adapter PN40 DN40		Digit	4 = "V" only - others upon request
		E							(3)	Flange adapter ISO PN20 DN40 (1'	1/2 - 150 ANSI)	Digit	4 = "V" only - others upon request
		F							(3)	Flange adapter ISO PN50 DN40 (1"	1/2 - 300 ANSI)	Digit	4 = "V" only - others upon request
		s							(3)	Screwed 1/2 NPTE		Digit	4 = "V" only - others upon request
		Т							(3)	To be welded (2"1/2 pipe)		Digit	4 = "V" only - others upon request
										Seal diaphragm design			_
										Diaphragm	Gasket surface	Flange	_
			٧						(4)	SS 316L	SS 316L		
			н							Hastelloy-C	Hastelloy-C		
			В							Monel	Monel		
			Т							Tantalum	Tantalum	SS 316L	
			Р						(9)	Titanium	Titanium	33010	
			R						(9)	Zirconium	Zirconium		
			С							SS 316L + gold coating	SS 316L		
		Į	F						(5)	SS 316L + PFA lining	SS 316L + PFA lining		

Notes* :

- 1- Raising Face, gasket surface standard finishing: '
 - "stock finish" (6.3 μm < Ra < 12.5 $\mu m)$ Other flange face an finishing upon request
- 2- For DN ≤ 50, please consult Fuji Electric regarding process conditions
- 3- Only for axial seal diaphragm connection No extension possible
- 4- SS 316L for DN50, DN80, DN100 and flange adapter
- 5- Not possible with digit 7 = "V", "U" and "X"
- 6- All wetted parts in the same material (diaphragm, extension and seal land surface). Available for Digit 3 = 4, 5, 6, 7, 8, 9, H, J, G.
 - Other remote seal on demand
- 7- Vacuum service and high temperature > 120°C : internal capillary diameter = 2mm
- 8- Please consult Fuji Electric regarding the process conditions (minimum pressure, maximum temperature)
- 9- Maximum process temperature: 150°C
- 10- When no code can be found in the current model code, place
 - "*" in the cor-responding digit code as well as in the 16th digit.

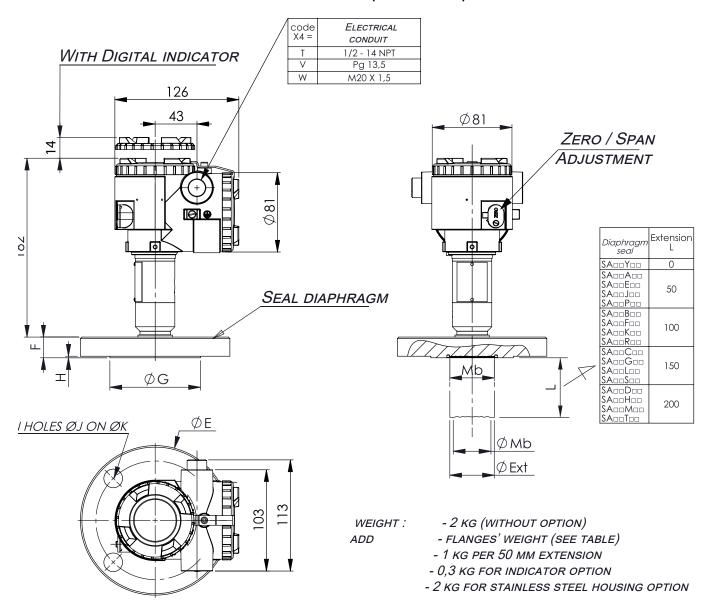

MODELS CODE SYMBOLS FKH...F

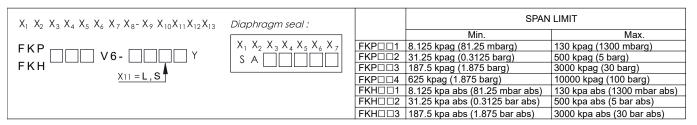

1 2 3 4 S	5	6	7	l	8	1			DECCE	IRTION	
	\vdash	⊢	<u> </u>	- 	\vdash				DESCR	IF I IUN	
	l						Diaphragm extension				
	Y	_				(0)	Flush mounting		1: :: A		
	A	_				(6)	Diaphragm extension 50		digit 4 = "V"		
	В					(6)	Diaphragm extension 10		digit 4 = "V"		
	С	_				(6)	Diaphragm extension 15		digit 4 = "V"		
	D E	_				(6)	Diaphragm extension 20		digit 4 = "V"		
	F					(6)	Diaphragm extension 50		digit 4 = "H"		
	G	_				(6)	Diaphragm extension 10 Diaphragm extension 15		digit 4 = "H" digit 4 = "H"		
	Н					(6)	Diaphragm extension 20		digit 4 = "H"		
] 					(6)	Diaphragm extension 50		digit 4 = "B"		
	Ιĸ					(6)	Diaphragm extension 10		digit 4 = "B"		
	L					(6)	Diaphragm extension 15		digit 4 = "B"		
	M					(6)	Diaphragm extension 20		digit 4 = "B"		
	Р					(6)	Diaphragm extension 50		digit 4 = "T"		
	R					(6)	Diaphragm extension 10		digit 4 = "T"		
	s					(6)	Diaphragm extension 15		digit 4 = "T"		
	Т					(6)	Diaphragm extension 20	00 mm	digit 4 = "T"		
							Remote seal assembli	ng characteristi	cs		
							Mounting assembly	Length	Protection		
		Α						1,5 m			
		В						3 m	PVC sheath		
		С						6 m	F VC Sileatii		
		D					Capillary	Upon request			
		G				(7)		1,5 m			
		Н				(7)		3 m	Stainless		
		K				(7)		6 m	steel sheath		
		L				(7)		Sur demande			
		R	<u> </u>							m process temperature: 1	50 °C
							Specific applications an				
							Treatmen	nt		lling fluids	
			Υ			\vdash	None (standard)		Silicone oil		
			W				None (standard)		Fluorinated o		
			F		-	\vdash	None (standard)		Sanitary fill flu		
			D			\vdash	Chlorine service		Fluorinated o	I	
			G				Degreasing		Silicone oil	D: :: 4	
			Α			\vdash	Oxygen service		Fluorinated oil	- Digit 4 = "V" only	
			N				NACE MR 0175 / ISO 1		Silicone oil		
			V 			(8)	Vacuum service - maxim				
			U			(8)	Very high temperature (
			LX_		\vdash	(8)	Very high temperature (20 to 350°C) - N	o vacuum		
					*	(10)	Special options	hi-	\neg		
						(10)	Special, no code availa	bie			

Notes*:

- 1- Raising Face, gasket surface standard finishing: '
 - "stock finish" (6.3 μm < Ra < 12.5 $\mu m)$ Other flange face an finishing upon request
- 2- For DN ≤ 50, please consult Fuji Electric regarding process conditions
- 3- Only for axial seal diaphragm connection No extension possible
- 4- SS 316L for DN50, DN80, DN100 and flange adapter
- 5- Not possible with digit 7 = "V", "U" and "X"
- 6- All wetted parts in the same material (diaphragm, extension and seal land surface). Available for Digit 3 = 4, 5, 6, 7, 8, 9, H, J, G.
 - Other remote seal on demand
- 7- Vacuum service and high temperature > 120°C : internal capillary diameter = 2mm
- 8- Please consult Fuji Electric regarding the process conditions (minimum pressure, maximum temperature)
- 9- Maximum process temperature: 150°C
- 10- When no code can be found in the current model code, place
 - "*" in the cor-responding digit code as well as in the 16th digit.

OUTLINE DIMENSIONS FOR CAPILLARY ASSEMBLY (UNITS: MM)

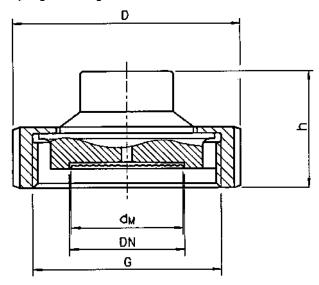



FLANGES DIMENSIONS ACCORDING TO EN 1092-1 & EN 1759-1									SS 316L Exotic material		tic material	\emptyset Mb = \emptyset diaphragm \emptyset Ext = extension		
diaphragm seal	EN 1092-1	EN 1759-1	ØE	F min	ØG	Н	NxØJ	ØK	Weight (kg)	L=0 ØMb	L≠0 ØExt=ØMb	L=0 ØMb	L≠0 ØExt(ØMb)	Wetted parts material
	D1150 D1140		1.75	00	100		4 10	105	0.0		40		10.0 (17)	
SAG□□□□	DN50 PN40		165	20	102	2	4 x 18	125	3,3	59	48	59	48,3 (47)	
SAH□□□□		2" CLASS 150	152	21	92	1,6	4 x 19	120,6	2,7	59	48	59	48,3 (47)	
SAJ□□□□		2" CLASS 300	165	22,5	92	1,6	8 x 19	127	3.7	59	48	59	48,3 (47)	
SA8□□□□	DN80 PN40		200	24	138	2	8 x 18	160	5,8	73	73	89	76 (72)	
SA4□□□□		3" CLASS 150	190	24	127	1,6	4 x 19	152,4	5,3	73	73	89	76 (72)	
SA6□□□□		3" CLASS 300	210	28,5	127	1,6	8 x 22,2	168,3	7,8	73	73	89	76 (72)	
SA9□□□□	DN100 PN16		220	22	158	2	8 x 18	180	5,9	96	96	89	94 (89)	
SA5□□□□		4" CLASS 150	229	24	157	1,6	8 x 19	190,5	7,7	96	96	89	94 (89)	
SA7□□□□		4" CLASS 300	254	32	157	1,6	8 x 22,2	200	12,7	96	96	89	94 (89)	

X_1 X_2 X_3 X_4 X_5 X_6 X_7 X_8 - X_9 X_{10} X_{11} X_{12} X_{13}			SPAN LIMIT		
1 2 0 4 0 0 7 0 7 10 11 12 10			Min.	Max.	
FKP ——— ——— —		FKP□□1	8.125 kpag (81.25 mbarg)	130 kpag (1300 mbarg)	
V6- Y		FKP□□2	31.25 kpag (0.3125 barg)	500 kpag (5 barg)	
FKH ————————————————————————————————————	Diaphragm seal :	FKP□□3	187.5 kpag (1.875 barg)	3000 kpag (30 barg)	
X11 = B, G	V V V V V V V	FKP□□4	625 kpag (1.875 barg)	10000 kpag (100 barg)	
	X_1 X_2 X_3 X_4 X_5 X_6 X_7	FKH□□1	8.125 kpa abs (81.25 mbar abs)	130 kpa abs (1300 mbar abs)	
	S A	FKH□□2	31.25 kpa abs (0.3125 bar abs)	500 kpa abs (5 bar abs)	
		FKH□□3	187.5 kpa abs (1.875 bar abs)	3000 kpa abs (30 bar abs)	

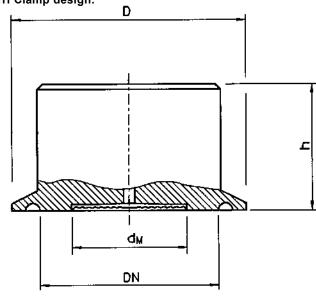
OUTLINE DIMENSIONS FOR RIGID ASSEMBLY (UNITS: MM)

FLANGES DIMENSIONS ACCORDING TO EN 1092-1 & EN 1759-1										SS 316L		Ехо	tic material	Wetted parts material
seal Diaphragm	EN 1092-1	EN 1759-1	ØE	F min	ØG	Н	NxØJ	ØK	<i>Weight</i> (kg)	L=0 ØMb	L≠0 ØExt=ØMb	L=0 ØMb	L≠0 ØExt(ØMb)	
														DEXI - extension
SAG	DN50 PN40		165	20	102	2	4 x 18	125	3,3	59	48	59	48,3 (47)	
SAHDDDD		2" CLASS 150	152	21	92	1,6	4 x 19	120,6	2,7	59	48	59	48,3 (47)	
SAJ□□□□		2" CLASS 300	165	22,5	92	1,6	8 x 19	127	3.7	59	48	59	48,3 (47)	
SA8□□□□	DN80 PN40		200	24	138	2	8 x 18	160	5,8	73	73	89	76 (72)	
SA4□□□□		3" CLASS 150	190	24	127	1,6	4 x 19	152,4	5,3	73	73	89	76 (72)	
SA6□□□□		3" CLASS 300	210	28,5	127	1,6	8 x 22,2	168,3	7,8	73	73	89	76 (72)	
SA9□□□□	DN100 PN16		220	22	158	2	8 x 18	180	5,9	96	96	89	94 (89)	
SA5□□□□		4" CLASS 150	229	24	157	1,6	8 x 19	190,5	7,7	96	96	89	94 (89)	
SA70000		4" CLASS 300	254	32	157	1,6	8 x 22,2	200	12,7	96	96	89	94 (89)	

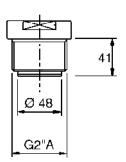

OUTLINE DIMENSIONS OF SANITARY DIAPHRAGM SEALS (UNITS: MM)

The seals for the sanitary and pharmaceutical applications are available according DIN, SMS and Tri-Clamp standards

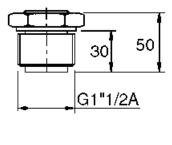
Seals according DIN 11851 et SMS


2 differents design exist for DIN 11851 and SMS:

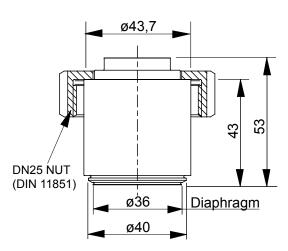
Coupling nut design:


DIN 11851										
DN	PN (Max)	D	h	d _M	G					
25	40	63	36	25	Rd 52 x 1/6					
32	40	70	36	32	Rd 58 x 1/6					
40	40	78	36	40	Rd 65 x 1/6					
50	40	112	36	52	Rd 78 x 1/6					
65	40	112	36	65	Rd 95 x 1/6					
80	40	127	36	76	Rd 110 x 1/4					
	SMS									
38	40	74	38	40	Rd 48 x 1/6					
51	40	84	38	52	Rd 60 x 1/6					
63.5	40	100	38	65	Rd 85 x 1/6					
76	40	114	38	76	Rd 98 x 1/6					
63.5	40	100	38	65	Rd 85 x 1/6					

Tri Clamp design:



DN	PN (Max)	D	h	$d_{_{M}}$
1"1/2	40	50	35	32
2"	40	64	35	40
2"1/2	40	77.5	35	50
3"	40	91	35	65


Screwed G 2"A:

No dead volume:

Fuji Electric France S.A.S.

46 rue Georges Besse - ZI du brézet - 63039 Clermont ferrand

Tél: 04 73 98 26 98 - Fax: 04 73 98 26 99

Mail: sales.dpt@fujielectric.fr - web: www.fujielectric.fr

Fuji Electric can accept no responsibility for possible errors in catalogues, brochures and other printed material. Fuji Electric reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. All rights reserved.